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SUMMARY 

Numerical solutions are often inaccurate because conventional co-ordinate systems d o  not represent the 
complex physical boundaries accurately. In the present work, the numerical solution of linear shallow water 
wave equations has been obtained by transforming the physical domain into a rectangular computational 
domain using elliptic differential operators. This work is part of a programme to develop three-dimensional 
body-lit grid systems for environmental flows. Solutions have been obtained for a cylindrical container and 
also a parabolic container. The initial conditions chosen are the ones for which analytical solutions exist. The 
numerical solutions compare well with analytical solutions. 
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INTRODUCTION 

The solution of the linear shallow water equations has been of great interest for a very long time. 
Lord Kelvin, as early as 1880, obtained analytical solutions for oscillations of fluid in a rotating 
cylindrical container. These solutions may be easily extended to motion in lakes, oceans etc. and 
are reported in detail by Gray et a/.' and Lamb.' Numerical solutions to shallow water equations 
were obtained by Thacker3 using irregular grid finite-difference techniques. Thacker4 has also 
obtained analytical solutions to non-linear shallow water equations for a parabolic container for 
certain initial conditions. Haeuser et aL5 have obtained numerical solutions for the linear shallow 
water equations in a cylindrical ring. The boundary fitted co-ordinate system was used in those 
solutions. 

In the present work, numerical solutions have been obtained for the linear shallow water 
equations in a cylindrical container and also in a parabolic container. The dimensions of the 
container are chosen such that the shallow water approximation is valid, and the Coriolis 
parameter is for a location at a latitude of 26.9" N (e.g. Lake Okeechobee, Florida). The physical 
domain was transformed into a rectangular computational domain using the transformation 
methods of Thompson et This transformation helps in the accurate representation of the 
boundary and accurate application of the boundary conditions. The grid point distribution and 
the metric coefficients are obtained from the computer codes TOMCAT and FATCAT developed 
by Thompson ef a/.' The governing equation and boundary conditions are also transformed. 
Although the problems attempted herein have circular boundaries and could have been solved 
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easily using a polar co-ordinate system, the boundary conforming co-ordinate system has been 
used to demonstrate the case and accuracy with which solutions may be obtained in the case 
of irregular domains. 

MATHEMATICAL MODEL 

The motion of fluid in a shallow basin is governed by the shallow water wave equations. These 
equations in the absence of convective terms (low Rossby number) are 

Momentum 

ah au --fV + g - = o o ,  
at ax 

av ah - + f U  +g--==. 
at dY 

Integrated continuity 

ah a a 
- + - [ V ( D  + h)]  + - [ V ( D  + h ) ]  = O  
at ax aY 

In the above equations U and V are the integrated velocities corresponding to the orthogonal 
directions x and y ,  h is the surface elevation and is positive if it is above the equilibrium level, D is 
the depth function and is positive below the equilibrium level, f is the Coriolis parameter and 
accounts for the earth’s rotation, and g is the acceleration due to gravity. 

The boundary condition used for the solution in the cylindrical domain is that the normal 
velocity is zero at all solid boundaries. In the case of the parabolic container the velocity gradients 
are set equal to zero. 

Analytical solutions are available for the above set of equations for certain special cases. 

CO-ORDINATE TRANSFORMATION 

The governing equations and boundary conditions are transformed from the physical (x, y )  co- 
ordinate system to the transformed system ( 5 ,  q). The transformation equations are Laplace 
equations 

with the boundary conditions 

5 = 5 1 ,  

5 = 5 ( X , Y ) ,  

5 = 5 2 ,  

5 = 5(X,Y), 
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The physical domain was fitted with a 109 x 109 grid. The boundary-fitted grid in the physical 
plane is shown in Figure 1. The complete transformation relations are detailed by Thompson et 
a1.' 

The transformed governing equations and boundary conditions are 

Momentum 

av 9 - - fU + -(x,h, - x,hJ = 0. 
at J 

Continuity 

ah 1 1 
- + - {Y ,  C(D + h) Ul, - Y ,  C(D + h) Ul, 1 + 7 {X, C(D + h) "1, - x, C(D + h) "I< 1 = 0. at J 

The boundary condition of zero normal velocity is applied by writing the momentum equations 
in the tangential-normal co-ordinates, imposing the zero normal velocity condition and solving 
for the tangential velocity. The procedure has been described in detail by Haeuser et aL5 In the 
numerical solution a staggered grid is used with surface elevation points not present in the 
boundary. Hence, only the tangential velocity at the boundary is unknown and is obtained by 
transforming and solving 

av, ah 
-+g - -0 ,  
at at* 

where t* is the tangential co-ordinate. 
For the parabolic container the zero velocity gradients boundary condition is applied by 

equating the U and I/ velocities at the boundary with the respective velocities at one of the 
neighbouring points. 

Figure 1. A 55 x 55 boundary-fitted grid in the physical plane 



456 R .  RAGHUNATH. S. SENGUPTA AND J .  HAEUSER 

NUMERICAL PROCEDURE 

The transformed equations are approximated by finite difference approximations. A simple, 
explicit, forward time central space (FTCS) discretization has been used in the present analysis. 

The physical domain is first fitted with a boundary fitted co-ordinate mesh, as shown in Figure 1, 
such that every part of the boundary is either along a t-line or an q-line. The co-ordinates and the 
associated derivatives are obtained using the computer codes TOMCAT and FATCAT developed 
by Thompson et a1.' 

A staggered mesh has been used in the calculation. The velocities U and V are calculated at the 
full grids and the surface elevation, h, is calculated at the half grids. Thus only the tangential 
velocity is calculated at the boundary points and then resolved into U and V components. 

Solution algorithm 

1. The initial distribution of the surface elevation and velocities that satisfy the analytical 
solution are first specified. 

2. The tangential velocity, and thus the U and V velocity components at the boundary, are then 
advanced for the next time step. 

3. After that the interior velocities are calculated by solving the momentum equations. 
4. The surface elevation is then calculated using the continuity equation. 
5. Steps 2-4 are repeated until the desired time. 

RESULTS 

Analytical 

Cylindrical container. For a cylindrical container rotating at angular velocity o the general 
solution is' 

h = J , (kr )  cos (me - nt),  

with the boundary condition 

2moJ,(ka) - nkaJk(ka) = 0 ,  

where a is the radius of the container. Also 

k2gD = n2 - f 2 ,  

where n is the angular velocity of oscillation, f is the Coriolis parameter = 2w sin 4 = 0.66 x 
10-4/s, w is the angular velocity of the earth, 4 is the latitude at the point of interest and D 
is the equilibrium depth of the container. 

Figure 2(a) shows the physical domain and the co-ordinate system used. In the present case 
a container of radius 10,000m and mean depth 10m was chosen. The Coriolis parameter was 
calculated at a latitude of 26.9" N. The mode corresponding to m = 1 and the third root of the 
boundary condition was chosen. For this mode, two nodes are present in the circumferential 
direction and three in the radial direction. 

Paraboloid. The analytical solutions of the shallow water equations for a rotating parabolic 
container have been obtained by Thacker4 for certain special cases of initial conditions. For 
the case when the surface is a plane initially, the fluid oscillates such that the surface remains a 
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(a) (b) 

Figure 2. Solution domain in the physical plane and the co-ordinate system: (a) cylindrical domain; (b)  parabolic domain 
D,,, = 80 m 

plane and the surface elevation distribution at any given time is 

h = 2nD/L[(x/L) cos w t  - (y /L)  sin wt - (q/2L)] 

where q is related to the amplitude of the oscillation, L is the radius of the container at the 
equilibrium level, D is the maximum depth and w is the angular velocity of oscillation. 

A paraboloid of equilibrium level radius 10,000m and maximum depth 80m was chosen. 
The numerical solution is compared with the solution of T h a ~ k e r . ~  Figure 2(b) shows the physical 
domain in detail. The amplitude related parameter q was set at 50 m and represents the precession 
of the centre. 

Numerical 

The numerical solution was verified with the exact solutions available. The scheme was tested 
for stability and convergence for the case of oscillations in a cylinder where the surface elevation 
is purely a function of the radius. It was found that the analytical stability criterion of 
At < A X / ( , / 2 g H )  was satisfied. The convergence of the scheme was tested for the simplest case 
of no nodes in the circumferential direction and one node in the radial direction with three 
different grid sizes. With a 19 x 19 mesh the numerical solution had a large error and showed 
the presence of an artificial mode of oscillation superimposed on the normal mode. The solutions 
obtained with a 37 x 37 mesh and a 55 x 55 mesh both agreed very well with the exact solution, 
suggesting that a 37 x 37 mesh was adequate for the resolution of this mode. However, the 
solutions presented herein are for more complicated cases. The solution in these cases was 
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EXACT - _  
- NUMERICAL 

obtained with three different mesh sizes, 55 x 55,73 x 73 and 109 x 109, and the solution required 
the 109 x 109 mesh for good agreement with the exact solution. 

Cylinder. The mode m =  1 was chosen as this allows for nodes in both the radial and 
circumferential directions. The numerical solution was obtained with a 109 x 109 grid. This 
yields only a grid of 54 x 54 surface elevation points because of the staggering of the velocity 
and surface elevation nodes. The surface elevations at a point near the boundary, (1, I ) ,  and at 
a point in the interior, (26,26), are shown in Figure 3. Figure 4 shows the V-velocity at these 
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Figure 3(a). Cylindrical container of depth IOm with a 109 x 109 grid and a time step of 5 s 
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Figure 3(b). Cylindrical container of depth 10m with a 109 x 109 grid and a time step of 5 s  
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E X A C T  - -  
- NUMERICAL 

two points. These solutions show that the numerical solution agrees well with the exact solution. 
During the first five periods the numerical solution shows a slight phase-lead but the amplitude 
of oscillation matches well with the exact solution. But later both the amplitude and phase are 
in error. The error in phase grows gradually and the error in amplitude is itself oscillatory. The 
errors are much smaller in the interior than at  the boundaries. Solutions have also been obtained 
for the lower modes and in these cases the agreement was even better for the same number of 
grid points. This is anticipated as the accuracy of the numerical solution depends on the number 
of grid points per wavelength. Three dimensional plots of surface elevation at five different times 
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Figure 4(a). Cylindrical container of depth 10m with a 109 x 109 grid and a time step of 5s  
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Figure 4(b). Cylindrical container of depth 10m with a 109 x 109 grid and a time step of 5s  



(c) 

Figure 5. Three-dirnensio lnal plot of the surface of fluid in the cylindrical container: (a) t - 7000s; (b) t - 7200s; 
(c) t - 7400 s; (d) t - 7600 s; (e) t - 7800 s 
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over a period of oscillation after nearly nine periods are shown in Figure 5. These show clearly 
that the pattern of solution merely rotates about the centre in a counterclockwise sense with a 
period close to 800s. 

Paraboloid. The solutions for fluid oscillations in a paraboloid are compared with the exact 
solutions of T h a ~ k e r . ~  The surface elevation variations with time at two different points in the 
domain are shown in Figure 6 and the I/-velocities at these points are shown in Figure 7. These 
plots show that the numerical solution compares well with the exact solution during the first ten 
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Figure 6(a). Parabolic container of depth 80m with a 109 x 109 grid and a time step of 5s  
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Figure 6(b). Parabolic container of depth 80m with a 109 x 109 grid and a time step of 5 s  
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Figure 7(a). Parabolic container of depth 80m with a 109 x 109 grid and a time step of 5 s  
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Figure 7(b). Parabolic container of depth 80m with a 109 x 109 grid and a time step of 5s  

periods. But the solution seems to decay progressively with time. The numerical solution is very 
well-behaved in the interior initially but slowly the error in the solution at the boundary 
propagates inside. 

The surface is initially a plane and the analytical solution of Thacker4 dictates that the surface 
should remain a plane. Contours of surface elevation obtained from the numerical solution after 
nearly nine periods are shown in Figure 8 for five different times and show the variation over a 
period. These plots show clearly that the surface remains almost a plane, but close to the boundary 
there are slight errors. 
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Figure 8. Contours of surface elevation for the parabolic container: (a) t = 14,400s; (b) t = 14,800s; (c) f = 15,200s; 
(d) t = 15,600s; (e) t = 16,000s 
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DISCUSSION 

The cases attempted herein are sufficiently general and show that numerical solutions may just as 
easily be obtained for arbitrary domains with arbitrary initial conditions. The solution for the 
cylindrical domain compares well with the exact solution. For the parabolic domain the solution 
compares well for the first ten periods but there is a slight error at the boundary, probably due to 
the application of the boundary condition. 

These solutions demonstrate that the boundary-fitted co-ordinate system may be used to obtain 
solutions for the shallow-water equations in irregular domains. The solutions obtained may be 
made even more accurate with a finer grid. 
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